Differential modulation of MAP kinases by zinc deficiency in IMR-32 cells: role of H(2)O(2).

نویسندگان

  • M Paola Zago
  • Gerardo G Mackenzie
  • Ana M Adamo
  • Carl L Keen
  • Patricia I Oteiza
چکیده

The influence of zinc deficiency on the modulation of the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase (ERK1/2), p38, and c-Jun N-terminal kinase (JNK) was studied. Using human IMR-32 cells as a model of neuronal cells, the role of oxidants on MAPKs and activator protein-1 (AP-1) activation in zinc deficiency was investigated, characterizing the participation of these events in the triggering of apoptosis. Relative to controls, cells incubated in media with low zinc concentrations showed increased cell oxidants and hydrogen peroxide (H(2)O(2)) release, increased JNK and p38 activation, high nuclear AP-1-DNA binding activity, and AP-1-dependent gene expression. Catalase addition to the media prevented the increase of cellular oxidants and inhibited JNK, p38, and AP-1 activation. Low levels of ERK1/2 phosphorylation were observed in the zinc-deficient cells in association with a reduction in cell proliferation. Catalase treatment did not prevent the above events nor the increased rate of apoptosis in the zinc-deficient cells. It is first demonstrated that a decrease in cellular zinc triggers H(2)O(2)-independent, as well as H(2)O(2)-dependent effects on MAPKs. Zinc deficiency-induced increases in cellular H(2)O(2) can trigger the activation of JNK and p38, leading to AP-1 activation, events that are not involved in zinc deficiency-induced apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gestational marginal zinc deficiency impaired fetal neural progenitor cell proliferation by disrupting the ERK1/2 signaling pathway.

This study investigated if a marginal zinc deficiency during gestation in rats could affect fetal neural progenitor cell (NPC) proliferation through a down-regulation of the extracellular signal-regulated kinase (ERK1/2) signaling pathway. Rats were fed a marginally zinc-deficient or adequate diet from the beginning of gestation until embryonic day (E)19. The proportion of proliferating cells i...

متن کامل

Zinc deficiency increases the susceptibility of human neuroblastoma cells to lead-induced activator protein-1 activation.

Lead (Pb2+) is a major environmental pollutant that has severe adverse effects on the nervous system. Similar human populations are at risk of suffering both Pb2+ toxicity and zinc (Zn) deficiency. Thus, in the present study we investigated whether Zn deficiency can increase the susceptibility of human neuroblastoma IMR-32 cells to Pb2+-induced oxidative stress which could trigger the activatio...

متن کامل

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

Global gene expression analysis using microarray to study differential vulnerability to neurodegeneration

Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...

متن کامل

Differential Gene-Expression of Metallothionein 1M and 1G in Response to Zinc in Sertoli TM4 Cells

Background: Zinc (Zn) as an important trace element is essential for testicular development and spermatogenesis. Molecular mechanism of Zn action in the reproductive system may be related to metal binding low-molecular weight proteins, metallothioneins (MT). Our objective was to determine the effect of Zn on two important isoforms of MT, MT1M and MT1G genes expression on testicular sertoli cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antioxidants & redox signaling

دوره 7 11-12  شماره 

صفحات  -

تاریخ انتشار 2005